Tetrahedron Letters, No.12, pp. 24-27, 1959. Pergamon Press Ltd. Printed in Great Britain

A NOVEL CATALYST SYSTEM FOR THE LOW-PRESSURE POLYMERIZATION OF ETHENE R. van Helden, H. P. Braendlin^{*}, A. F. Bickel, E. C. Kooyman^{**} KONINKLIJKE/SHELL-LABORATORIUM, AMSTERDAM (Shell Internationale Research Maatschappij N.V.)

(Received 17 July 1959)

OUR assumptions with respect to the growing entities in the Ziegler polymerization¹ have led us to attempt generation of these fragments by other means. The partial reduction of aluminium trichloride with alkali metal in the presence of ethene, followed by oxidation with TiCl_4 , was found to be successful.

Results

(1) AlCl₃ and K (1-2:1) suspended in heptane react in the presence of ethene with the formation of a black-grey solid reaction product; addition of TiCl₄ led to a rapid polymerization to polyethene (65° C, atmospheric pressure). The reactivity of the system increases to a maximum with increasing reaction time of AlCl₃ and K (1 hr). The reaction between AlCl₃ and K could also be carried out in a nitrogen atmosphere; however, polymerization took place only if the replacement of nitrogen by ethene was performed before the addition of TiCl₄. (2) The black-grey product, isolated by filtration, has the same

^{*} Present address: Purdue University, Lafayette, Indiana, U.S.A.

[&]quot; Present address: Leiden University

¹ R. van Helden, A. F. Bickel, E. C. Kooyman, <u>Tetrahedron Letters</u> No. 12, 18 (1959).

reactivity in combination with TiCl₄ as the original system. Decomposition of this material with water gives ethane (about 50% on K-intake) and hydrogen (about 30% on K-intake). The amount of ethane formed amounted to 93% based on ethene absorbed during the reaction of AlCl₃ and K. With D₂0 more than 90% of the deutero-ethanes produced had the composition $C_2H_kD_2$.

By extraction of the black-grey solid with ether a white compound A was obtained (yield 45% on Al-intake) which had the composition (Table 1):

 $Al_2Cl_4.C_2H_4.2Et_20$ (A) m.p. 74.6-75.2°C (vacuo)

	Mol. wt. (ebullioscopic)	% Al	\$ C1	^{% С} 2 ^н б	% Et ₂ 0
Calc. for A	372.1	14.5	38,1	7.54	39.9
Found	364; 370	14.7	38.2	7.42	35 <u>+</u> 4 [*]

TABLE 1

Mean value from 6 determinations

Decomposition with D_20 yielded more than 90% $C_2H_4D_2$. The etherinsoluble part, a black material, mainly consisted of Al and/or Al subhalides.

When the dietherate (A) was allowed to react with TiCl_4 in the presence of ethene no polymerization took place, but when 2 moles of AlCl_3 / mole of A were added, addition of TiCl_4 led to a rapid polymerization to polyethene.

Interaction of the black-grey solid or compound A + 2 AlCl₃ with TiCl₄ under nitrogen yields TiCl₃ and small amounts of ethene. Ethane was not formed.

Discussion

Since interaction of AlCl₃ and K under nitrogen and replacement by ethene shortly before addition of $\text{TiCl}_{\underline{k}}$ gives the same results as when

carrying out the whole reaction under ethene, primary formation of Alsubhalides and/or Al would seem probable. Their presence is confirmed by the formation of hydrogen on decomposition with water.

The subhalides formed react with ethene to form compounds of the

type
$$AlCl_2 - C_2 H_4 - AlCl_2$$
 (B)

The proposed structure of (A):

 $\begin{array}{cccc} C1 & CH_2 & CH_2 & A1 & C1 \\ C1 & A1 & CH_2 & CH_2 & A1 & C1 & 2 & Et_2 0 \end{array}$

is supported by the formation of $C_2H_4D_2$ on decomposition with D_20 and by, the known structure of the analogous boron compound $Cl_2B-C_2H_4-BCl_2$.²

When TiCl_4 is added before nitrogen has been replaced by ethene, the subhalides are oxidized to AlCl_5 and the formation of (B) is hence not possible: polymerization does not take place.

It seems reasonable to assume that on addition of $TiCl_4$ the initiating fragments (See ref. 1) are formed in the following way:

FIG. 1

26

Low-pressure polymerization of ethene

A comparison of this reaction with that postulated in ref. 1 shows that a similar type of initiating species is formed in both cases. The formation of ethene is probably due to decomposition of I or by reaction with another equivalent of TiCl_h in the same way as mentioned in ref. 1.

The activation of the system A + TiCl₄ by AlCl₃ is apparently due to the following reaction:

2 AlCl₃ + Cl₂Al-C₂H₄-AlCl₂.2 Et₂0 \longrightarrow 2 AlCl₃-Et₂0 + Cl₂Al-C₂H₄-AlCl₂

² W. H. Urry <u>et al.</u>, <u>J. Amer. Chem. Soc.</u> <u>76</u>, 5299 (1954); E. B. Moore and W. N. Lipscomb, <u>Acta Cryst.</u> <u>9</u>, 668 (1956).